
Software is an important but trou-
bling technology. Software applica-

tions are the driving force of modern
business operations, but software is
also viewed by many chief executives
as one of the major problem areas
faced by large corporations [1, 2, 3, 4].

The litany of senior executive com-
plaints against software organizations
is lengthy, but can be condensed down
to a set of three very critical issues that
occur over and over in hundreds of
corporations:
1. Software projects are not estimated or

planned with acceptable accuracy.
2. Software project status reporting is

often wrong and misleading.
3. Software quality and reliability are

often unacceptably poor.
When software project managers

(PMs) themselves are interviewed, they
concur that the three major complaints
levied against software projects are real
and serious. However, from the point of
view of software managers, corporate
executives also contribute to software
problems [5, 6]. The following are three
complaints against top executives:
1. Executives often reject accurate

and conservative estimates.
2. Executives apply harmful schedule

pressure that damages quality.
3. Executives add major new require-

ments in mid-development.
Corporate executives and software

managers have somewhat divergent
views as to why software problems are
so prevalent. Both corporate execu-
tives and software managers see the
same issues, but these issues look quite
different to each group. Let us exam-
ine the root causes of the five software
risk factors:
1. Root causes of inaccurate estimat-

ing and schedule planning.
2. Root causes of incorrect and opti-

mistic status reporting.
3. Root causes of unrealistic schedule

pressures.
4. Root causes of new and changing

requirements during development.
5. Root causes of inadequate quality

control.

These five risk areas are all so critical
that they must be controlled if large
projects are likely to have a good
chance of a successful outcome.

Root Causes of Inaccurate
Estimating and Schedule
Planning
Since both corporate executives and
software managers find estimating to
be an area of high risk, what are the
factors triggering software cost esti-
mating problems? From analysis and
discussions of estimating issues with
several hundred managers and execu-
tives in more than 75 companies

between 1995 and 2006, the following
were found to be the major root caus-
es of cost estimating problems:
1. Formal estimates are demanded

before requirements are fully
defined.

2. Historical data is seldom available
for calibration of estimates.

3. New requirements are added, but
the original estimate cannot be
changed.

4. Modern estimating tools are not
always utilized on major software
projects.

5. Conservative estimates may be
overruled and replaced by aggres-
sive estimates.
The first of these estimating issues –

formal estimates are demanded before require-
ments are fully defined – is an endemic
problem which has troubled the soft-
ware community for more than 50 years
[7, 8]. The problem of early estimation
does not have a perfect solution as of
2006, but there are some approaches
that can reduce the risks to acceptable
levels.

Several commercial software cost
estimation tools have early estimation
modes which can assist managers in
sizing a project prior to full require-
ments, and then in estimating develop-
ment staffing needs, resources, sched-
ules, costs, risk factors, and quality [9].
For very early estimates, risk analysis is
a key task.

These early estimates have confi-
dence levels that initially will not be
very high. As information becomes
available and requirements are defined,
the estimates will improve in accuracy,
and the confidence levels will also
improve. But make no mistake, soft-
ware cost estimates performed prior to
the full understanding of requirements

4 CROSSTALK The Journal of Defense Software Engineering June 2006

Social and Technical Reasons for Software Project Failures©

Capers Jones
Software Productivity Research, LLC

Major software projects have been troubling business activities for more than 50 years. Of any known business activity, soft-
ware projects have the highest probability of being cancelled or delayed. Once delivered, these projects display excessive error
quantities and low levels of reliability. Both technical and social issues are associated with software project failures. Among
the social issues that contribute to project failures are the rejections of accurate estimates and the forcing of projects to adhere
to schedules that are essentially impossible. Among the technical issues that contribute to project failures are the lack of mod-
ern estimating approaches and the failure to plan for requirements growth during development. However, it is not a law of
nature that software projects will run late, be cancelled, or be unreliable after deployment. A careful program of risk analysis
and risk abatement can lower the probability of a major software disaster.

Why Projects Fail

© 2005-2006 by Capers Jones. All Rights Reserved.

“One advantage
that function

points bring to early
estimation is that they

are derived directly from
the requirements and

show the current status
of requirements
completeness.”

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 5

are intrinsically difficult. This is why
early estimates should include contin-
gencies for requirements changes and
other downstream cost items.

The second estimating issue – his-
torical data is seldom available for calibra-
tion of estimates – is strongly related to
the first issue. Companies that lack his-
torical information on staffs, sched-
ules, resources, costs, and quality levels
from similar projects are always at risk
when it comes to software cost estima-
tion. A good software measurement
program pays handsome dividends
over time [10].

For those organizations that lack
internal historical data, it is possible to
acquire external benchmark informa-
tion from a number of consulting
organizations. However, the volume of
external benchmark data varies among
industries, as do the supply sources.

One advantage that function points
bring to early estimation is that they
are derived directly from the require-
ments and show the current status of
requirement completeness [11]. As
new features are added, the function
point total will go up accordingly.
Indeed, even if features are removed
or shifted to a subsequent release, the
function point metric can handle this
situation well [12, 13].

The third estimating issue – new
requirements are added but the original esti-
mate cannot be changed – is that of new
and changing requirements without
the option to change the original esti-
mate. It is now known that the rate at
which software requirements change
runs between 1 percent and 3 percent
per calendar month during the design
and coding stages. Thus, for a project
of 1,000 function points and an aver-
age 2 percent per month creep during
design and coding, new features sur-
facing during design and coding will
add about 12 percent to the final size
of the application. This kind of infor-
mation can and should be used to
refine software cost estimates by
including contingency costs for antici-
pated requirements creep [14].

When requirements change, it is
possible for some projects in some
companies to revise the estimate to
match the new set of requirements.
This is as it should be. However, many
projects are forced to attempt to
accommodate new requirements with-
out any added time or additional funds.
I have been an expert witness in sever-
al lawsuits where software vendors
were directed by the clients to keep to

contractual schedules and costs even
though the clients added many new
requirements in mid-development.

The rate of requirements creep will
be reduced if technologies such as
joint application design (JAD), proto-
typing, and requirements inspections
are utilized. Here too, commercial esti-
mating tools can adjust their estimates
in response to the technologies that
are planned for the project.

The fourth estimating problem –
modern estimating tools are not always utilized
on major software projects – is the failure to
use state-of-the-art software cost esti-
mating methods. It is inappropriate to
use rough manual rules of thumb for
important projects. If the costs are
likely to top $500,000 and the sched-
ules take more than 12 calendar
months, then formal estimates are
much safer.

Some of the commercial software cost
estimating tools used in 2006 include:
COCOMO II, Construx Estimate,
COSTAR, CostXpert, KNOWLEDGE-
PLAN, PRICE-S, SEER, SLIM, and
SOFTCOST.

For large software projects in
excess of 1,000 function points, any of
these commercial software cost esti-
mating tools can usually excel manual
estimates in terms of accuracy, com-
pleteness, and the ability to deal with
tricky situations such as staffing
buildups and growth rate in require-
ments.

Estimating tools have one other
major advantage: when new features

are added or requirements change,
redoing an estimate to accommodate
the new data usually only takes a few
minutes. In addition, these tools will
track the history of changes made dur-
ing development and, hence, provide a
useful audit trail.

The fifth and last of the major esti-
mating issues – conservative estimates may
be overruled and replaced by aggressive esti-
mates – is the rejection of conservative
or accurate cost estimates and devel-
opment schedules by clients or top
executives. The conservative estimates
are replaced by more aggressive esti-
mates that are based on business needs
rather than on the capabilities of the
team to deliver. For some government
projects, schedules may be mandated
by Congress or by some outside
authority. There is no easy solution for
such cases.

The best solution for preventing
the arbitrary replacement of accurate
estimates is evaluating historical data
from similar projects. While estimates
themselves might be challenged, it is
much less likely that historical data will
be overruled.

It is interesting that high-tech
industries are usually somewhat more
sophisticated in the use of estimating
and planning tools than financial ser-
vices organizations, insurance compa-
nies, and general manufacturing and
service groups. The high-tech indus-
tries such as defense contractors, com-
puter manufacturers, and telecommu-
nication manufacturers need accurate
cost estimates for their hardware prod-
ucts, so they usually have estimating
departments that are fully equipped
with estimating tools that also use for-
mal estimating methods [15].

Banks, insurance companies, and
low-technology service companies do not
have a long history of needing accu-
rate cost estimates for hardware prod-
ucts so they have a tendency to esti-
mate using informal methods and also
have a shortage of estimating tools
available for software PMs.

Root Causes of Incorrect
and Optimistic Status
Reporting
One of the most common sources of
friction between corporate executives
and software managers is the social
issue that software project status
reports are not accurate or believable.
In case after case, monthly status
reports are optimistic that all is on

“Several commercial
software cost estimation

tools have early
estimation modes that
can assist managers in
sizing the projects prior
to full requirements, and

then in estimating
development staffing

needs, resources,
schedules, costs, quality,

and risk factors.”

Why Projects Fail

6 CROSSTALK The Journal of Defense Software Engineering June 2006

schedule and under control until
shortly before the planned delivery
when it is suddenly revealed that
everything was not under control and
another six months may be needed.

What has long been troubling
about software project status reporting
is the fact that this key activity is
severely underreported in software
management literature. It is also
undersupported in terms of available
tools and methods.

The situation of ambiguous and
inadequate status reporting was com-
mon even in the days of the waterfall
model of software development.
Inaccurate reporting is even more
common in the modern era where the
spiral model and other alternatives such
as agile methods and the object-oriented
paradigm are supplanting traditional
methods. The reason is that these non-
linear software development methods
do not have the same precision in
completing milestones as did the older
linear software methodologies.

The root cause of inaccurate status
reporting is that PMs are simply not
trained to carry out this important
activity. Surprisingly, neither universi-
ties nor many in-house management
training programs deal with status
reporting.

If a project is truly under control
and on schedule, then the status
reporting exercise will not be particu-
larly time consuming. Perhaps it will
take five to 20 minutes of work on the
part of each component or depart-
ment manager, and perhaps an hour to
consolidate all the reports.

But if a project is drifting out of

control, then the status reports will
feature red flag or warning sections that
include the nature of the problem and
the plan to bring the project back
under control. Here, more time will be
needed, but this is time very well
spent. The basic rule of software sta-
tus reporting can be summarized in
one phrase: No surprises!

The monthly status reports should
consist of both quantitative data on
topics such as current size and num-
bers of defects and also qualitative
data on topics such as problems
encountered. Seven general kinds of
information are reported in monthly
status reports:
1. Cost variances (quantitative).
2. Schedule variances (quantitative).
3. Size variances (quantitative).
4. Defect removal variances (quantita-

tive).
5. Defect variances (quantitative).
6. Milestone completions (quantita-

tive and qualitative).
7. Problems encountered (quantita-

tive and qualitative).
Six of these seven reporting elements
are largely quantitative, although there
may also be explanations for why the
variances occur and their significance.

The most common reason for
schedule slippage, cost overrun, and
outright cancellation of a major sys-
tem is that they contain too many bugs
or defects to operate successfully.
Therefore, a vital element of monthly
status reporting is recording data on
the actual number of bugs found com-
pared to the anticipated number of
bugs. Needless to say, this implies the
existence of formal defect and quality

estimation tools and methods.
Not every software project needs

the rigor of formal monthly status
reporting. The following kinds of soft-
ware need monthly status reports:
• Projects whose total development

costs are significant (>$1,000,000).
• Projects whose total development

schedule will exceed 12 calendar
months.

• Projects with significant strategic
value to the enterprise.

• Projects where the risk of slippage
may be hazardous (such as defense
projects).

• Projects with significant interest
for top corporate management.

• Projects created under contract
with penalties for non-perfor-
mance.

• Projects whose delivery date has
been published or is important to
the enterprise.
The time and effort devoted to

careful status reporting is one of the
best software investments a company
can make. This should not be a sur-
prise: status reports have long been
used for monitoring and controlling
the construction of other kinds of
complex engineering projects.

During the past 20 years, a number
of organizations and development
approaches have included improved
status reporting as a basic skill for
PMs. Some of these include the
Project Management Institute, the
Software Engineering Institute’s (SEI)
Capability Maturity Model® (CMM®),
the reports associated with the Six
Sigma quality methodology, and the
kinds of data reported when utilizing
International Organization for
Standardization (ISO) Standards.

Unfortunately, from examining the
status reports of a number of projects
that ended up in court for breach of con-
tract, inaccurate status reporting still
remains a major contributing factor to
cost overruns, schedule overruns, and
also to litigation if the project is being
performed under contract.

Root Causes of Unrealistic
Schedule Pressures
Unrealistic schedule pressure by exec-
utives or clients is a common software
risk factor. There are four root causes
for unrealistic schedule pressure:
1. Large software projects usually

Planned Versus Actual Software Schedules

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1FP 10FP 100FP 1000FP 10000FP 100000FP

Size in Function Points (FP)

S
c
h
e
d
u
l
e
i
n
C
a
l
e
n
d
a
r
M
o
n
t
h
s

Planned

Actual

Figure1: Planned VersusActual Schedules for SoftwareProjects

Figure 1: Planned Versus Actual Schedules for Software Projects

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 7

have long schedules of more than
36 months.

2. PMs are not able to successfully
defend conservative estimates.

3. Historical data from similar pro-
jects is not available.

4. Some kind of external business
deadline affects the schedule.
Figure 1 shows U.S. industry expe-

riences derived from several thousand
software projects. The upper curve
shows the average delivery time in cal-
endar months, while the lower curve
shows the planned or desired delivery
time. The larger the project, the
greater the gap between the actual
delivery date and the planned delivery
date of the application [16].

Executives may be arbitrary in their
decisions, but they are seldom stupid.
While corporate executives might
want a large software project finished
in 24 months, they will almost certain-
ly accept a 36-month schedule as a
fact of life (if they know that not one
of 50 similar projects within their
industry has ever been completed in
less than 36 months). Estimates might
be overruled, but accurate historical
data will probably keep schedule pres-
sure from becoming unrealistic.

The most difficult problem to solve
is when some kind of external business
deadline affects the project schedule.
Unfortunately, these business deadlines
are usually outside the control of either
PMs or technical personnel. Examples
of external business deadlines include
contractual obligations, the starting
dates of new laws that require software
support, or some kind of technical sit-
uation such as those associated with
the Y2K problem.

Such external fixed dates cannot be
changed, or at least not changed by
project personnel. Therefore a combi-
nation of cutting back on functions,
plus staff overtime, remains the most
common method for dealing with
fixed and unchanging delivery dates. If
the mandated schedule is quite impos-
sible to achieve, then a more drastic
option would be project cancellation.

Root Causes of New and
Changing Requirements
During Development
The root causes of requirements
changes are dynamic businesses. Real-
world requirements for software must
change in response to new business
needs. However, average change rates
of 2 percent per calendar month indi-

cate that the methods used for gather-
ing and analyzing the initial require-
ments are inadequate and should be
improved.

By counting function points from
the original requirements and then
counting again at the time of delivery,
it has been found that the average rate
of requirements growth is about 2 per-
cent per calendar month from the
nominal completion of the require-
ments phase through the design and
coding phases.

The total accumulated volume of
new or changing requirements can top
50 percent of the initial requirements
when function point totals at the
requirements phase are compared to

function point totals at deployment.
The state-of-the-art requirements
change control includes the following:
• A joint client/development change

control board.
• Use of JAD to minimize down-

stream changes.
• Use of formal prototypes to mini-

mize downstream changes.
• Formal review of all change

requests.
• Revised cost and schedule esti-

mates for all changes under 50
function points.

• Prioritization of change requests in
terms of business impact.

• Formal assignment of change
requests to specific releases.

• Use of automated change control
tools with cross-reference capabili-
ties.
One of the observed byproducts of

the usage of formal JAD sessions is a
reduction in downstream requirements
changes. Rather than having unplanned
requirements surface at a rate of 1 per-

cent to 3 percent every month, studies
of JAD by IBM and other companies
have indicated that unplanned require-
ments changes often drop below 1
percent per month due to the effec-
tiveness of the JAD technique.

Prototypes are also helpful in
reducing the rates of downstream
requirements changes. Normally, key
screens, inputs, and outputs are proto-
typed so users have some hands-on
experience with an example of the
completed application.

However, changes will always
occur for large systems. It is not pos-
sible to freeze the requirements of any
real-world application.Therefore, lead-
ing companies are ready and able to
deal with changes and do not let them
become impediments to progress;
some form of iterative development is
a logical necessity.

Root Causes of Inadequate
Quality Control
Effective software quality control is
the most important single factor that
separates successful projects from
delays and disasters. The reason for
this success is that finding and fixing
bugs is the most expensive cost ele-
ment for large systems, and it takes
more time than any other activity.

The root cause for poor quality
control is lack of solid empirical data
on the cost effectiveness of a good
quality control program. More than 50
years of empirical studies have proven
that projects with effective quality
control cost less and have shorter
schedules than similar projects with
poor quality control. However, a dis-
tressing number of PMs are not aware
of the economics of quality control [5,
10].

Successful quality control involves
defect prevention, defect removal, and
defect measurement activities. The
phrase defect prevention includes all
activities that minimize the probability
of creating an error or defect in the
first place. Examples of defect preven-
tion activities include the use of the
Six Sigma approach, the use of JAD
for gathering requirements, the use of
formal design methods, the use of
structured coding techniques, and the
use of libraries of proven reusable
material.

The phrase defect removal includes all
activities that can find errors or
defects in any kind of deliverable.
Examples of defect removal activities

“More than 50 years
of empirical studies
have proven that

projects with effective
quality control cost

less and have shorter
schedules than similar

projects with poor
quality control.”

Why Projects Fail

8 CROSSTALK The Journal of Defense Software Engineering June 2006

include requirements inspections,
design inspections, document inspec-
tions, code inspections, and many
kinds of testing [17, 18].

The phrase defect measurement
includes measures of defects found
during development and also defects
reported by customers after release.
These two key measures allow leading
companies to calculate their defect
removal efficiency rates, or the per-
centages of defects found prior to
release of software applications.
Supplemental measures such as severi-
ty levels, code complexity, and defect
repair rates are also useful and important.
Statistical analysis of defect origins and
root-cause analysis are beneficial, along
with the key measurements of cost and
defect repairs [10].

Some activities benefit both defect
prevention and defect removal simultane-
ously. For example, participation in design
and code inspection is very effective in
terms of defect removal and also benefits
defect prevention. Defect prevention is
aided because inspection participants
learn to avoid the kinds of errors that
inspections detect.

Successful quality control activities
include defect prevention, defect removal,
and defect measurements. The combina-
tion of defect prevention and defect
removal activities leads to some very sig-
nificant differences in the overall numbers
of software defects between successful
and unsuccessful projects.

For projects in the 10,000 function
point range, the successful ones accumu-
late development totals of around 3.0
defects per function point and remove
about 96 percent of them before cus-
tomer delivery. In other words, the num-
ber of delivered defects is about 0.12
defects per function point or 1,200 total
latent defects. Of these, about 10 percent
– or 120 – would be fairly serious defects.
The rest would be minor or cosmetic
defects.

By contrast, the unsuccessful projects
accumulate development totals of around
7.0 defects per function point and remove
only about 85 percent of them before
delivery. The number of delivered defects
is about 1.05 defects per function point or
10,500 total latent defects. Of these, about
15 percent – or 1,575 – would be fairly
serious defects. This large number of seri-
ous latent defects after delivery is very
troubling for users. If a project has more
than about 7.0 defects per function point
and less than 85 percent removal efficien-
cy, it will probably be cancelled because it
can never successfully exit testing, and the

test cycle will be hopelessly protracted.
One of the reasons why successful

projects have such a high defect removal
efficiency compared to unsuccessful pro-
jects is the use of design and code inspec-
tions [17, 18]. Formal design and code
inspections average about 65 percent effi-
cient in finding defects. They also improve
testing efficiency by providing better
source material for constructing test cases.

Unsuccessful projects typically omit
design and code inspections and depend
purely on testing. The omission of up-
front inspections causes three serious
problems:
1. The large number of defects still pre-

sent when testing begins slows the
project to a standstill.

2. The bad fixes1 injection rate for projects
without inspections is alarmingly high.

3. The overall defect removal efficiency
associated with only testing is not suf-
ficient to achieve defect removal rates
higher than about 80 percent.
Fortunately, the SEI, ISO quality stan-

dards, and the Six Sigma approach have
benefited quality control activities
throughout the past 20 years. As a result,
an increasing number of large projects
have been successful compared to similar
projects done in the 1980s.

However, for very large projects above
10,000 function points in size, missed
delivery dates, cost overruns, and outright
terminations remain distressingly high
even in 2006. The industry is improving,
but much more improvement is needed.

Summary and Conclusions
Large software projects are very haz-
ardous business ventures. For projects
above 10,000 function points, cancella-
tions, delays, and cost overruns have been
the norm rather than the exception.

Careful analysis of the root causes of
large software project delays and disasters
indicate that most of the problems stem
from inaccurate estimation, inaccurate sta-
tus reporting, lack of historical data from
similar projects, and suboptimal quality
control.

All of these root causes can be mini-
mized or even eliminated by the adoption
of formal estimating methods and tools,
formal monthly status reports of both
quantitative and qualitative data, collecting
historical data, and improving quality con-
trol methods. Large software projects will
never be without risk, but if the risks can
be brought down to acceptable levels,
both clients and corporate executives will
be pleased.u

Note
1. The term bad fixes refers to secondary

defects accidentally injected by means
of a patch or defect repair that is itself
flawed. The industry average is about 7
percent, but for unsuccessful projects
the number of bad fixes can approach
20 percent; i.e. one out of every five
defect repairs introduced fresh defects
[14]. Successful projects, on the other
hand, can have bad-fix injection rates
of only 2 percent or less.

References
1. Yourdon, Ed. Death March – The

Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects. Upper Saddle River, NJ:
Prentice Hall, 1997.

2. Glass, R.L. Software Runaways:
Lessons Learned from Massive
Software Project Failures. Prentice
Hall, 1998.

3. Johnson, James. “The Chaos Report.”
West Yarmouth, MA: The Standish
Group, 2000.

4. Ewusi-Mensah, Kweku. Software
Development Failures. Cambridge,
MA: Massachusetts Institute of
Technology Press, 2003.

5. Jones, Capers. Assessment and
Control of Software Risks. Prentice
Hall PTR, 1994.

6. Jones, Capers. Patterns of Software
System Failure and Success. Boston,
MA: International Thomson
Computer Press, 1995.

7. Boehm, Barry. Software Engineering
Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

8. Jones, Capers. “Sizing Up Software.”
Scientific American Magazine Dec.
1998: 104-111.

9. Jones, Capers. Estimating Software

“The most common
reason for schedule

slippages, cost
overruns, and outright
cancellation of major
systems is that they

contain too many bugs
or defects to

operate successfully.”

Social and Technical Reasons for Software Project Failures

June 2006 www.stsc.hill.af.mil 9

Costs. New York, NY: McGraw Hill,
1998.

10. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison-Wesley
Professional, 2002.

11. Jones, Capers. Applied Software
Measurement. 2nd ed. New York, NY:
McGraw Hill, 1996.

12. Garmus, D. and D. Herron. Function
Point Analysis – Measurement Prac-
tices for Successful Software Projects.
Boston, MA: Addison-Wesley Profes-
sional, 2001.

13. International Function Point Users
Group (IFPUG). IT Measurement –
Practical Advice from the Experts.
Boston, MA: Addison-Wesley, 2002.

14. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

15. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison-Wesley
Professional, 2000.

16. Jones, Capers. Conflict and Litigation
Between Software Clients and Devel-
opers. Narragansett, R.I.: Software
Productivity Research LLC, 2005.

17. Radice, Ronald A. High Quality, Low
Cost Software Inspections. Andover,
MA: Paradoxicon Publishing, 2002.

18. Wiegers, Karl E. Peer Reviews in
Software – A Practical Guide.
Boston, MA: Addison Wesley
Professional, 2002.

COMING EVENTS

July 5-7
18th International Conference on

Software Engineering and Knowledge
San Francisco, CA

www.ksi.edu/seke/seke06.html

July 6-8
SEDE 2006

15th International Conference on
Software Engineering and Data

Engineering
Los Angeles, CA

www.isp.mu-luebeck.de/
sede06/index.htm

July 16-19
WMSCI 2006

The 10th World Multi-Conference on
Systemics, Cybernetics, and Informatics

Orlando, FL
www.iiisci.org/wmsci2006/website/

default.asp

July 16-19
SERP 2006

The 3rd Symposium on Risk
Management and Cyber-Informatics

Orlando, FL
www.iiisci.org/rmci2006/website/

default.asp

July 23-28
Agile 2006

Minneapolis, MN
www.agile2006.com

July 24-28
Practical Software and

Systems Measurement (PSM)
10th Annual Users’ Group Conference

Vail, CO
www.psmsc.com/Events.asp

April 16-19, 2007
2007 Systems and Software

Technology Conference

www.sstc-online.org

About the Author

Capers Jones is cur-
rently the chairman of
Capers Jones & Asso-
ciates, LLC. He is also
the founder and former
chairman of Software

Productivity Research, LLC (SPR),
where he holds the title of Chief
Scientist Emeritus. He is a well-known
author and international public speaker,
and has authored the books “Patterns of
Software Systems Failure and Success,”
“Applied Software Measurement,” “Soft-
ware Quality: Analysis and Guidelines
for Success,” “Software Cost Esti-
mation,” and “Software Assessments,
Benchmarks, and Best Practices.” Jones
and his colleagues from SPR have col-
lected historical data from more than 600
corporations and more than 30 govern-
ment organizations. This historical data is
a key resource for judging the effective-
ness of software process improvement
methods. The total volume of projects
studied now exceeds 12,000.

Software Productivity
Research, LLC
Phone: (877) 570-5459

(973) 273-5829
Fax: (781) 273-5176
E-mail: cjones@spr.com

nabling Technologies for Net-Centricity
January 2007

Submission Deadline: August 21

Agile Development
February 2007

Submission Deadline: September 18

COTS Integration
March 2007

Submission Deadline: October 16

CrossTalk, available on the
Intern We accept article submissions on all
softw p y , g th Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
t th CrossTalk can get the word out. We are specifically looking for

chedule for three areas of emphasis we are looking for:

